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PECULIARITIES OF THERMOPHYSICAL MEASUREMENTS OF THERMOELECTRIC MATERIALS 

K. K. Semenyuk UDC 536.2.083 

This paper examines a method for direct measurement of the heat losses in deter- 
mining the thermal conductivity of thermoelectric materials. 

In [i] Harman proposed to determine.the thermal conductivity of thermoelectric materials 
by measuring the temperature difference T2 -- T~ between the ends of a thermoelement, through 
which a current I was flowing, from the formula 

d el (T~ + T2) (i _ V)- (i) 

s 2 (T2-- Ti)- 

In order to reduce the error Y due to thermal losses from the surface of the specimen, 
one uses quite long and fine thermocouples and current leads, and the measurements are con- 
ducted in vacuum on specimens of dimensions such that the condition m << i holds [2, 3]. Be- 
low we examine the method of direct measurement of the correction term y in Eq. (I). The 
method is based on the phenomenon that if the Peltier effect is used to create a heat flux 
through the thermoelement, the flux magnitude and direction can be controlled by varying the 
magnitude and direction of the electric current I. 

We consider a thermoelement with current leads whose length satisfies the condition at 
infinity d~ >> (rzx~/al) -I/2. We assume also that the following conditions hold. i) There is 
no temperature drop over the cross section of the thermoelement. This condition holds if 
(a~/x) << i. 2) The thermoelectric parameters and the heat-transfer coefficient are indepen- 
dent of temperature. Then the heat-conduction equations for the thermoelement and the cur- 

rent leads in dimensionless form take the form 

# 0  o 2 (0 -- %) + v 2 = O, (2) 
dx ~ - 

dzOta o~t (Ot~ --0o)  + Czlv2 = O, (3)  
dx ~ 

d20:, 
dx" o~, (Or, - -  0o) + c a v~ = o. (~) 

Here and below the subscripts I and 2 refer to the first (on ~he left in Fig. i) and second 
faces, respectively, of the thermoelement. This means that the thermal conditions are dif- 
ferent at the ends; and 0o is the dimensionless temperature of the surrounding medium. 

We assume that for a single direction of current through the thermoelement the tempera- 
tures O], < O~ . a r e  established at its ends. If the curren~ direction is changed, then 0'~ > 0~'. 
Thus, Eqs. (2)-(4) can be solved by well-known methods with the following boundary conditions: 
for the first current direction 

0 (0) =_Ozt (0) = 0[,  0 ( l )  =- 0 u (1) ----- 02, 

and for the second direction 

o(o) = oz~ (o) = o~, 6 0 )  =Oz,  O) = o~. 

An additional condition for OZ~ and 0t2 is that the heat flux at infinity is zero. 
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Fig. i. Schematic representation of the 
boundary conditions for the thermoele- 
ment with the two current directions and 
various heat-transfer conditions (0[, 0';, 
e; " , 0 2 are quantities before the change 

,,, oIV ,,, O IV and 0 1 , , O 2 , after the change 
in thermal conditions). 

With the given initial conditions we obtain the temperature distribution along the 
! I 

t he rmoe lemen t  and t h e  c u r r e n t  l e a d s :  O'(X) , 0] .~(•  0 /2( •  fo r  t he  f i r s t  c u r r e n t  d i r e c t i o n  
I !  I !  

and O"(X) , Ol~(X) , 012(X) for the second current direction. We write down the thermal bal- 
ance e q u a t i o n s  a t  t h e  ends .  For  t h e  f i r s t  c u r r e n t  d i r e c t i o n :  • = 0 ( t h e  co ld  j u n c t i o n )  

,vOi--dO' (X) t • dO:lt (X) I 
- a---~ ~=o -  + si,  ( % -  o O, 

• dx x=0 

X = 1 (the hot junction) 

(5) 

vO~= dO' 0~ ' - -~)  i d x  x = z •215 dO[~-(X) l d X  x= ~ -b Biz (0~ - -  O~ 

For the second current direction: • = 0 (the cold junction) 

v0'~, = dO" (X) x=0 •  d0]~. (X) I + Biz (% - -  02), 
" d X • d~ x---o 

(6) 

(7) 

X = 1 (the hot junction) 

,,o; = dO" (x____L I 
dx z=1 

Combining Eq. (5) with (8) and Eq. 
obtain 

where 

l lsz  t d 0 ] ,  (X) 1 + B i l  (0~ - -  0o) .  (8)  
• dx x= I 

(6) with (7), and evaluating the derivatives, we 

2~lKo = A01KtKo + A02, 

2v0"2Ko= A0; + AO~_KzK 0, 

(9) 

(lO) 

aol = o~ - el, ao~ = o ~ -  o~, 

~, (o; + o012, -6,_ = (o~ + o2)/ ,  

K l = ~ c t h ~  + z|isp ~ll-FBit ,  Ko= sh'--'-9-~, 

K, = oetho)q-- ~Z*s~ o~zq-Bi2. 

It can be seen from the equations obtained that if we change the thermal conditions in 
any fashion at the second end of the thermoelement (e.g., we increase the parameter Bi2 by 
the quantity Bi', supplied to the end of the thermally insulated rod), the unknown quanti- 
ties remain unchanged in Eq. (9). Using a method analogous to the previous, we obtain 

2~3Ko = .A0] K, Ko + A0;, (11) 

2"r K0 = A0; + A0~Ko (Ks + Bi~), (12) 
where A'" O TM -i z' 2 are the temperatures of the ends for the first current direction; and @IV, 81V 
are the temperatures of the ends for the second current direction; 
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= (o;'" + 0 D , ~, = (0~'" + 0~v) 
2 2 

Ao, = o i v -  o;", AO; = o ; " -  o 7. 

In Eqs. (9)-(12) we may assume that Ol = 0--2 = O3 = O . .  This condition holds with an er- 
ror which is much less than y. Then from Eqs. (9) and (i0) we obtain an expression for the 
measurement of the thermal conductivity of the thermoelement: 

eT, Id l1 --(?'--?01 = xo(1 - - ? ) ,  (13)  
•  sA~---- 7 

/[ Ko(K,+Kz )-2 ] (14)  
y' = l 1 + (K, K o -  I ) (K=Ko- -  l)' ' 

A T ' =  AT;+AT; 
, ~" = K0-- I (15) 

We obtain an expression for the direct measurement 7' from Eqs. (9) and (ii) 

AT" AT; AT - ~ -  ' 

where 

A T ' =  AT; + AT.~ 
2 

The e x p e r i m e n t  may be s e t  up i n  such a way t h a t  t h e  c o n d i t i o n  K~ = K2 h o l d s .  We n o t e  
t h a t  t h i s  case i s  c o n s i d e r e d  i n  a l l  t h e  r e f e r e n c e s  as t h e  Harman method.  I f  he re  t h e  h e a t -  
transfer coefficient from the lateral surface and the ends of the thermoelement are equal, 
then from Eqs. (14) and (15) for m << i we obtain 

whe re 

~, = 3 + 6 ~  ? . +  1 u (17) 

S , ~,,, XnS n 
pd xs 

Al lowing  f o r  Eq. ( 1 7 ) ,  we o b t a i n  an e x p r e s s i o n  t o  d e t e r m i n e  t h e  c o r r e c t i o n  t e r m  p i n  Eq.  (13) 

! + 6~ , / +  I y , , .  (18 )  Y =  3 + ~  3 + 6 - - ~  

In Eq. (18) the correction term Y' is experimentally measured according to Eq. (16). 
The terms y" and Y'" cannot be determined by a similar method because the value of Bi; in 
Eq. (12) is aot known. This means that for different heat-transfer conditions at the ends, 
the correction term y will be determined with a method error of 7". For the same thermal 
conditions this error will be equal to the second term in Eq. (18). Calculated values of 
these errors are given'in Table 1 for a cylindrical thermoelement at room temperature, of 
radius r = d/4 and made of material based on Bi2Te~. From the calculation it can be seen 
that this method should be used for conditions when K~ = K=. An experimental check of the 
validity of these conditions will be the equalltyhT': = AT'. Then, from Eq. (18) the error 
in determining the thermal conductivity is 

A , , =  a,,,_~, + A ~ - - ,  +____/_I ~,,,, (19) 
x o ? 3 +  6~ 

where Ay'/y' is the relative error in measurement y' from Eq. (16). It can be shown that 
for 7 < i the second term in Eq. (19) does not exceed the error in measuring the temperature 
difference AT', which, according to the data of [4], is 0.3% for the method which measures 
the timewise differences in eopper--Constantan thermocouples. If we have A~0/x0=l~ then, 

A• = 1=6 ~ 
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TABLE i. Conditions for the Measurement and Computation of 

Errors 7" and X'" 

I x, deg W/rn z. deg ~' deg~. r~,m V' I v"" 

5"lO-a 2"I0-2 I 3"I0-3 

Expressions (13)-(18) were obtained by solving the one-dimensional heat-conduction equa- 
tion with the condition that the thermoelectric parameters are independent of temperature. 
In regard to the additional errors which can appear when the assumptions adopted are invalid, 
we can restrict ourselves to the following comments. 

i. In [5, 6] 7 was calculated for a cylindrical thermoelement, allowing for the tempera- 
ture distribution over the section. It was shown that the additional terms which would then 
appear in 7 have no practical significance if (~r/~) 40.5. From the data of Table i, this 
condition is reached for T = 1200~ 

2. It was shown in [7] that if the thermal conductivity, the electrical conductivity, 
and the Thomson coefficient depend on temperature, then the heat-conduction process proceeds 
basically as it does for constant coefficients. The difference is that the Joule and Thomson 
heats in the general case are not divided strictly equally between the junctions of the 
thermoelement, through which the electric current flows. Then different terms, proportional 
to the differences of these heats, must appear in the expressions for KI and K2. From the 
data of Table 1 and of [8], these additional terms can be neglected for a current through 
the element of 0.i A, and a temperature difference between the junctions of 3~ 

3. From Eqs. (9) and (i0) we can obtain the result that if the additional terms in KI 
and K2 are small, then the functions ATe(1) and ATe(1) must be linear. Measurements con- 
ducted on specimens of materials based on Bi2Te3 have shown that the linearity of these rela- 
tions is retained for currents up to 0.051o, where Io is the optimal thermoelectric current. 
To create isothermal conditions at the ends, the latter were covered with a layer of solder 
of thickness up to 0.5 �9 10 -3 m. 

The method considered can be also used in determining the thermal diffusivity, the 
thermoelectric efficiency, and the heat-transfer coefficient of thermoelectric materials. 

NOTATION 

T, absolute temperature; Z, thermoelectric efficiency; • p, e, thermal conductivity, 
specific resistance, and thermoelectric coefficient of the thermoelement; I, thermoelectric 
current; d, s, r, 6, length, cross-sectional area, radius,and thickness of the thermoelement; 
~, heat-loss coefficient from the lateral surface of the thermoelement; • 01, thermal con- 
ductivity and specific resistance of the current leads; al, heat-transfer coefficient from 
the surface of the current leads; p, perimeter of the thermoelectric cross section; rl, Sl, 
radius and cross-sectional area of the current leads; X = x/d, dimensionless coordinate; Bi = 
~d/• the Blot number; ZT = e, dimensionless thermoelectric temperature; 8 1 = ZT/, dimension- 
less temperature of the current leads; ~ = (edl/• m = d(~p/• ~l = d(2~l/xlrl)~; C1 = 
(•215 
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